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We present a learnability analysis of the argument-modifier distinc-
tion, asking whether there is information in the distribution of English
constituents that could allow learners to identify which constituents
are arguments and which are modifiers. We first develop a general de-
scription of some of the ways in which arguments and modifiers differ
in distribution. We then identify two models from the literature that
can capture these differences, which we call the argument-only model
and the argument-modifier model. We employ these models using a
common learning framework based on two simplicity biases which
tradeoff against one another. The first bias favors a small lexicon with
highly reusable lexical items, and the second, opposing, bias favors
simple derivations of individual forms – those using small numbers of
lexical items.

Our first empirical study shows that the argument-modifier model
is able to recover the argument-modifier status of many individual
constituents when evaluated against a gold standard. This provides
evidence in favor of our general account of the distributional differ-
ences between arguments and modifiers. It also suggests a kind of
lower bound on the amount of information that a suitably equipped
learner could use to identify which phrases are arguments or modi-
fiers.

Journal of Language Modelling Vol 10, No 2 (2022), pp. 241–286



Leon Bergen et al.

We then present a series of analyses investigating how and why
the argument-modifier model is able to recover the argument-modifier
status of some constituents. In particular, we show that the argument-
modifier model is able to provide a simpler description of the in-
put corpus than the argument-only model, both in terms of lexicon
size, and in terms of the complexity of individual derivations. Intu-
itively, the argument-modifier model is able to do this because it is
able to ignore spurious modifier structure when learning the lexicon.
These analyses further support our general account of the differences
between arguments and modifiers, as well as our simplicity-based
approach to learning.

1 INTRODUCTION

The expressivity of natural language is made possible by a division of
labor between an inventory of stored items (e.g., morphemes, words,
idioms, etc.), known as the lexicon, and a set of structure-building
operations which combine lexical items to create new expressions,
known as the grammar.1 The operation of the grammatical system is
highly constrained by requirements imposed by specific lexical items.
Consider the verb put. In its most basic usage, this verb can only ap-
pear in sentences which contain constituents expressing: (i) who is
doing the putting, (ii) what is being put, and (iii) the destination of the
putting event. The sentence ∗John put the loaf of bread is incomplete,
while the sentence John put the loaf of bread in his kitchen cupboard is
not. Furthermore, put imposes other requirements on sentence struc-
ture, such as the requirement that object being put be expressed as a
noun phrase. We will refer to such lexically-specified requirements as
the argument structure of put.

1Note that throughout this paper, we use the term lexical item to refer to the
elementary units combined by a grammar formalism – whether or not they con-
tain surface words. In the tree-adjoining grammar tradition, which we make use
of here, these would more formally be called elementary trees. Hence, whenever
we use the term lexical item, we are referring to what are typically referred to
as elementary trees in that literature.
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Over the last decades, many linguistic theories have adopted a
lexically-driven view of grammar. Under such an architecture, gram-
matical computation is performed by small number of structure-build-
ing operations (e.g., UNIFY, MERGE, etc.) whose behavior is controlled
by the argument-structure specifications of lexical items (Bresnan
2001; Chomsky 1995a,b; Culicover and Jackendoff 2005; Gamut
1991; Gazdar et al. 1985; Heim and Kratzer 1998; Huddleston and
Pullum 2002; Jackendoff 2002; Johnson and Postal 1980; McConnell-
Ginet and Chierchia 2000; Mel’čuk 1988; Moortgat 1997; Pollard and
Sag 1994; Sag 2012; Stabler 1997; Steedman 2000).2 The develop-
ment of lexically-driven approaches to grammar leads naturally to the
suggestion that much of language learning might be reduced to the
problem of learning the lexicon (see, e.g., Chomsky 1993).

However, natural language also exhibits constituents that do not
appear to be arguments of any lexical item. Consider the sentence
While preparing dinner, John thoughtlessly put the loaf of bread in his
kitchen cupboard. In this sentence, the phrases while preparing dinner
and thoughtlessly specify additional information about the time and
manner of the putting event, but they do not seem to be required
by any other constituent and the sentence is well-formed and inter-
pretable without them. These phrases also differ in a number of other
ways from the core arguments of the verb. For instance, while the
argument-phrase specifying the doer of the putting event (i.e., John)
must appear in the subject position of the sentence (∗put the loaf of
bread John in his kitchen cupboard), these other phrases can appear in
a greater variety of positions (John thoughtlessly put the loaf of bread
in his kitchen cupboard, while preparing dinner). We will refer to such
non-argument phrases as modifiers.

The existence of such (apparent) non-argument-driven structure
raises a fundamental question. If there are both lexical and non-lexical

2We note that an alternate tradition of constructivist theories argue that argu-
ment structure is not associated with particular lexical roots (a position some-
times known as projectivism) but rather is a consequence of the functional struc-
ture into which roots are inserted during syntactic derivation (see Marantz 2013,
for discussion). To the degree that differences between arguments and modifiers
in such frameworks still give rise to the distributional differences we discuss
below, our results are also consistent with these theories.
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modes of composition, how do learners determine when and how each
are used? Consider the phrase in his kitchen. In the sentence John put
the loaf of bread in his kitchen, this phrase is an argument, while it is
a modifier in the sentence John made the loaf of bread in his kitchen.
Adult speakers understand these structural differences despite such
superficial similarities between the constructions. How do they come
by this knowledge?

In this paper, we use computational modeling to address this
question. We argue that the statistics of natural language corpora
provide evidence that would allow learners to distinguish between
argument and non-argument modes of composition in many cases.
This evidence is complementary to other forms of evidence avail-
able to learners that have been discussed in the context of the
argument-modifier distinction in the linguistic literature (such as se-
mantic differences) and can be leveraged by appropriately equipped
learners to determine the argument or modifier status of individual
phrases.

In Section 2, we propose that modifiers tend to differ from lexi-
cally specified arguments in three ways that have distributional con-
sequences (inter alia): iterability vs. finiteness, optionality vs. obli-
gatoriness, and structural flexibility vs. structural fixity. In Sec-
tion 2.1, we describe two models of lexicon learning designed to
minimally capture these differences: the argument-only model and the
argument-modifier model. All formal details can be found in the appen-
dices of the paper.

In Section 3, we describe how lexicon learning under both mod-
els can be formulated in terms of a tradeoff between two simplicity
biases that favor small lexica (simple-lexicon bias) and simple deriva-
tions (simple-derivation bias), respectively. Adopting this tradeoff-
based approach, we first show in Section 5.1 that the argument-
modifier model is able to recover the argument status of many con-
stituents in a gold-standard corpus, indicating that it captures some
aspect of the argument-modifier distinction as discussed in the lin-
guistics literature. We then show in Section 5.2 that the argument-
modifier model is able to provide explanations of the input cor-
pus that are more optimal in terms of both the small-lexicon and
simple-derivation biases. These results imply that there is clear
distributional evidence indicating the argument-modifier status of

[ 244 ]



Arguments and modifiers

many phrases and that this evidence could be leveraged by learners
who make use of a tradeoff between derivational and lexical sim-
plicity.

2ARGUMENTS AND MODIFIERS

Historically, some distinction between arguments and modifiers
(sometimes called adjuncts) has been assumed by nearly all theo-
ries of syntax and semantics and a number of theoretical mechanisms
have been proposed to handle the distinction. Furthermore, many
different syntactic and semantic tests have been proposed for distin-
guishing between the two kinds of phrase (see Bergen et al. 2015, for
detailed review of this literature). In this paper, we operationalize the
argument-modifier distinction by focusing on one particular question:
Which constituents in a sentence are there because they were required
by some lexical item, and which are not lexically required? In this pa-
per, argument structure will refer to any lexically-specified constraint
or requirement on constituent co-occurrence. We intend this general
notion of argument structure to potentially include many kinds of
lexically-specified constraint that have been proposed over the years
in different grammatical traditions. Thus, it includes verb-argument
structure but, also, the lexical requirements of other categories such
as prepositions or nouns.

The difference between arguments and modifiers is often cast in
semantic terms. While we do not deny that there are important differ-
ences in the way that these types of constituent contribute to the mean-
ing of sentences, in this paper we focus solely on differences between
the two types of phrase that affect the distribution of constituents in
language.

In lexically-specified grammar formalisms, lexical items list their
arguments and (typically) where these arguments appear with respect
to the selecting item. This architecture has three critical properties
which have important distributional consequences. First, lexical items
in such formalisms usually specify only a small number of argument
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positions (finiteness).3 Second, lexical arguments are typically oblig-
atory in such systems (obligatoriness), though some mechanisms for
handling optional arguments are usually provided. Third and finally,
particular arguments are required to appear in fixed relationship to the
selecting lexical item (structural fixity). In languages like English, this
typically corresponds to their structural position with respect to their
selecting head. In other languages, this may correspond to a grammat-
ical relation which is encoded in other ways (e.g., case).

By contrast, the types of constituents which have been tradi-
tionally identified as modifiers differ in each of these three prop-
erties. An unbounded number of modifiers can often be added to
a constituent (finiteness vs. iterability); modifiers tend to be op-
tional (obligatoriness vs. optionality); and modifiers often occur in a
greater variety of structural relationships with their head (structural
fixity vs. structural flexibility). These three dimensions of variation
summarize a large number of properties and linguistic tests that have
been discussed in the literature (Borsley 1999; Comrie 1993; Creis-
sels 2014; Croft 2001; Forker 2014; Haegeman 1994; Haspelmath
2014; Hornstein and Lightfoot 1981; Koenig et al. 2003; Kroeger 2004;
Matthews 1981; Przepiórkowski 1999a,b; Radford 1988; Rákosi 2006;
Schütze 1995; Schütze and Gibson 1999; Tallerman 2015; Tutunjian
and Boland 2008; Vater 1978; Wichmann 2014; Zwicky 1993).4

We emphasize that these properties are not definitional and
do not represent necessary and sufficient conditions on argument-
hood. Instead, they are tendencies: Arguments are sometimes op-
tional (e.g., John ate/John ate the cake) and in some cases there
is more than one structural realization of the same arguments of
some lexical item (e.g., John gave Mary the book/John gave the book
to Mary). At the same time, there are often strong constraints on
the structural position of modifiers (e.g., John gave Mary the book
quickly/∗John gave quickly Mary the book) and there are construc-
tions in which modifiers are obligatory (e.g., These ovens clean eas-
ily).5 Nevertheless, the three properties do roughly summarize a
number of linguistic tests for argument-/modifierhood often dis-

3See Przepiórkowski (2017) for an exception.
4See Bergen et al. (2015) for a detailed review of this literature.
5We thank an anonymous reviewer for this example.
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cussed in the literature. We propose that these statistical tendencies
can be used by suitably equipped learning to determine the argu-
ment/modifier status of many constituents and, thus, provide a use-
ful source of evidence for lexicon learning that is complementary
to other sources of evidence that have been discussed in the litera-
ture.

2.1Tree-substitution and sister-adjunction grammars

In this paper, we use probabilistic tree-substitution grammars as our
model of lexical argument structure. A tree-substitution grammar for-
malizes the lexicon as an inventory of stored tree fragments, such as
those shown in Figure 1 (Bod 1998; Joshi and Levy 1975; Scha 1990,
1992). This figure shows the inventory of elementary trees that we
will use as examples below.6 Each tree fragment encodes the cate-
gory and structural position of argument phrases that must be present
in a complete sentence which is derived using the fragment. In a tree-
substitution grammar, lexical fragments are combined via the SUBSTI-
TUTE operation, which replaces a node at the frontier of a derivation
with another tree fragment from the lexicon – subject to the condition
that the category of the frontier node and the root category of the sub-
stituted fragment are identical. The SUBSTITUTE operation is applied
recursively until no substitutable nodes remain at the frontier, and a
complete sentence has been derived.

S

NP VP

V

put

NP PP PP

S

NP VP

V

put

NP PP

PP

at 5 o’clock

NP

John

NP

the socks

PP

in the drawer

Figure 1:
Inventory of tree fragments

6Note that the internal constituent structure of the noun and prepositional
phrases (NP and PP) has been suppressed.
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Tree-substitution grammars capture the three core properties of
argument structure discussed Section 2. Each lexical fragment can
only possess a fixed (and in practice small) number of leaf variables
(finiteness). All such variables must be filled in a complete derivation
(obligatoriness); and finally, the position of each argument phrase
is fixed relative to the lexical item which selects for it (structural
fixity).
To model modification, we make use of an extension of tree-

substitution grammars which introduces a second structure-building
operation, sister-adjunction (Chiang 2000; Chiang and Bikel 2002;
Rambow et al. 1995; Schabes and Shieber 1994). While SUBSTITUTE
must be licensed by the presence of an argument node at the frontier,
SISTER-ADJOIN can insert a constituent as the sister to any node in an
existing tree. The formalism is strongly equivalent to (unlexicalized)
tree-insertion grammar and, therefore, has the same weak generative
capacity as context-free grammar (Schabes and Waters 1995).7

To derive the complete tree for a sentence using a set of fragments
such as those shown in Figure 1, the generative process starts from a
single nonterminal node of category S (i.e., the start symbol), and then
recursively samples arguments and modifiers according to the follow-
ing procedure. For each node f with nonterminal category A on the
frontier of our derivation, we perform the following two steps. First,
we choose an elementary tree t with category A from our lexicon and,
for each position before or after a node on the interior of t, we sister-
adjoin zero or more new nonterminal nodes, representing modifier
phrases. Second, we substitute f – now with modifier category nodes
– into the derivation at node n (see discussion of Figure 2 below). This
process then repeats on any nonterminal nodes now on the frontier of
the tree. In particular, if we have sister-adjoined a modifier node with
category X, its internal structure will be determined recursively by
choosing an elementary tree of category X from the lexicon.

The SISTER-ADJOIN operation formalizes the three core ways in
which modifiers differ from arguments: (i) The decision to insert or
not insert a modifier does not change the well-formedness of a gen-
erated structure with respect to the satisfaction of lexical argument

7We note that these formalisms have different strong generative capacity,
however.
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S

NP

John

VP

V

put

NP

the socks

PP

in the drawer

PP

at 5 o’clock

NP

John

NP

the socks

PP

in the drawer

PP

at 5 o’clock

S

NP

John

VP

V

put

NP

the socks

PP

in the drawer

PP

at 5 o’clock

NP

John

NP

the socks

PP

at 5 o’clock

PP

in the drawer

Figure 2:
TSG versus SAG derivations

requirements (optionality) (ii) SISTER-ADJOIN can insert any num-
ber of modifiers at a position in a derivation (iterability), and (iii)
SISTER-ADJOIN can insert a modifier at any position in a constituent
(structural flexibility).

Figure 2 illustrates two derivations of the same tree, one in a stan-
dard tree-substitution grammar (TSG) without sister-adjunction, and
one in the model extended with SISTER-ADJOIN, which we term sister-
adjunction grammar (SAG). The tree-substitution grammar derivation,
at the top of the figure, uses an elementary tree with four leaf non-
terminals as the backbone for the derivation. The four phrases filling
these arguments are then substituted into the elementary tree, as in-
dicated by arrows. Note that in tree-substitution grammars the prepo-
sitional phrase, at 5 o’clock, which is a temporal modifier, enters the
derivation through an argument node. However, the sister-adjunction
grammar in the lower part of the figure is able to insert this modifier
using SISTER-ADJOIN (indicated using dotted lines) and, therefore,
uses an elementary tree with only three leaf nonterminals as the back-

[ 249 ]



Leon Bergen et al.

bone of this derivation. This difference will mean that tree-substitution
grammars will require a greater number of tree fragments in the lex-
icon to account for variability that could otherwise be accounted for
using modification.

3 HANDLING UNCERTAINTY:
TRADEOFF-BASED LEARNING OF LEXICA

Neither language learners nor linguists have a priori knowledge of
the set of lexical items in a language, their particular argument struc-
tures, or the argument/modifier status of individual phrases in the in-
put. Rather, the set of lexical argument structures in a language must
be learned from linguistic input, and the derivation of particular sen-
tences must be inferred on a case-by-case basis. In this paper, we adopt
a probabilistic approach to these problems of learning and inference,
specifying prior distributions over lexicons and derivations for both
the argument-only model and the argument-modifier model, and us-
ing probabilistic conditioning to infer language-specific lexicons and
utterance-specific derivations from input data. We give formal defini-
tions of our prior distributions, and algorithms for estimating condi-
tional probabilities in Section 6. In this section, we give an intuitive
overview of the ideas behind the framework.

Following earlier work, we propose that lexicon learning is guided
by two prior biases for simplicity (especially Brent 1999; De Marcken
1996a,b; Goldwater 2006; Johnson et al. 2007; O’Donnell 2011, 2015).
The first, the simple lexicon bias, provides an a priori measure of the
quality of lexicons, favoring those with fewer, more reusable lexical
items. The second, the simple derivation bias, provides an a priori mea-
sure of the quality of the derivations of individual sentences, favoring
simpler derivations involving smaller numbers of lexical items, and
lexical items with higher probability. These two biases lead to a trade-
off: For a fixed set of sentences, if we increase the average reusability
of lexical items, then we must also increase the average number of lex-
ical items used in any derivation. Likewise, if we decrease the average
number of lexical items used per derivation, we must, on average, in-
crease the size of the lexicon. The inference problem is to jointly find a
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set of lexical items and sentence derivations that best explains the dis-
tribution of forms in the input data, subject to these two prior biases.

Our two prior biases are a special case of the standard Bayesian
prior/likelihood tradeoff applied to the problem of lexical storage. The
preference for more reusable lexical items is encoded by the prior
over lexical items and the preference for smaller derivations results
from the likelihood, which favors derivations in which fewer random
choices are made. In the two sections below, we provide additional
intuitions about the behavior of our models when applied to input
datasets and details about their implementation.

3.1Simplicity biases and inference

As just discussed, our models encode two simplicity biases. The simple
lexicon bias favors smaller lexicons containing more reusable lexical
items. Following Goldwater (2006), Johnson et al. (2007), and others,
we formalize this bias using a distribution from Bayesian nonparamet-
ric statistics known as the Pitman-Yor Process (Pitman and Yor 1995).
A Pitman-Yor process PYP(G0, a, b) is a distribution over lexical items
that is specified with three parameters, G0, a, and b. The first param-
eter, G0, is a prior distribution over possible tree fragments that can
be stored as lexical items. The other two parameters – known as the
concentration parameter b and discount parameter a – are real-valued
such that 0≥ a ≥ 1 and b > −a.

A Pitman-Yor process operates as follows. The first time we sam-
ple from PYP(G0, a, b), a new lexical item will be chosen according to
G0, stored internally by the Pitman-Yor process, and returned to the
caller. On subsequent invocations, either a previously sampled lexi-
cal item i will be returned with probability ni − a

N + b
, or a new lexical

item will be sampled from G0, stored, and returned, with probability
aK + b
N + b

, where ni is the number of times that lexical item i was pre-
viously sampled, N is the total number of lexical items sampled so far
(i.e., N =
∑

j n j), and K is the number of distinct lexical items that
have been previously sampled (i.e., the number of lexical types). No-
tice that these definitions favor smaller numbers of lexical items and
induce a rich-get-richer dynamic whereby lexical items that are used
more often are more likely to be reused.
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The simple derivation bias favors derivations for individual sen-
tences that use small numbers of more probable lexical items. In both
the argument-only model and argument-modifier model, this bias is
captured by our assumption that the probability of a derivation is the
product of the probabilities of the lexical tree fragments used to con-
struct it. Because probabilities must be numbers between 0 and 1,
the probability of a derivation decreases quickly (geometrically) as
the number of fragments it contains increases. However, this can be
mitigated somewhat if the fragments are highly probable (i.e., have
probability close to 1).

Applying these two simplicity biases to tree-substitution gram-
mar, we arrive at what we call the argument-only model (see Bod
et al. 2003; Cohn et al. 2010; O’Donnell 2011, 2015; Post and Gildea
2013, for related models). To better understand the inferential behav-
ior of the argument-only model, it is useful to consider a toy example.
Figure 3 shows three possible solutions to the problem of inferring the
correct set of stored tree fragments for a toy corpus consisting of three
sentences.

Figure 3: Inference in the argument-only model
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Row I of Figure 3 shows the result of storing and using only the
smallest, most abstract fragments of sentence structure. In this case,
each particular lexical item will be highly reusable, and the lexicon
will be maximally compact. However, the derivations of individual
sentences will necessarily make use of many lexical fragments and
will therefore be more complex. Row II of the figure shows the solu-
tion at the other extreme. In this case, every utterance is stored in its
entirety. This solution will result in extremely large lexicons with lex-
ical items of limited reusability. However, individual sentences which
recur in the data will be derivable with a single lexical item, result-
ing in potentially low-cost derivations if particular sentences recur in
the input. Row III of Figure 3 shows an intermediate solution which
is more optimal with respect to this dataset. By storing lexical frag-
ments which express argument structures of intermediate complexity,
this solution produces a more compact lexicon than the solution in
Row II, and simpler derivations than the solution in Row I, providing
a globally better explanation of the input forms. The inference prob-
lem solved by the argument-only model is to find such optimal sets of
tree fragments given an input corpus.

A similar pair of simplicity biases is used to define the distribution
over modifiers. Recall that SISTER-ADJOIN inserts modifier category
nodes into derivations and that these nodes are then filled using SUB-
STITUTE. We place a Pitman-Yor process prior over the set of possible
modifier node categories. This prior will bias the model towards using
a small set of category types when sampling modifiers. For example,
the modifier model might prefer to hypothesize that only adjective
and adverb phrases are likely to be modifiers rather than adjective,
adverb, noun, and verb phrases. A second simplicity bias favors in-
serting only a small number of modifiers into derivations. This bias is
captured by the assumption that the probability of deriving a sequence
of modifiers is the product of probabilities of the individual modifiers
in this sequence. Because this product drops off geometrically in the
number of modifiers, the model will prefer derivations which contain
a small number of modifiers.

Applying all of the simplicity biases to sister-adjunction gram-
mar, we arrive at the argument-modifier model. During inference,
the argument-modifier model will attempt to find an optimal set
of reusable argument-structure fragments by categorizing individual
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nodes in input data trees as either (i) internal to a stored tree frag-
ment, (ii) built by substitution of a lexical item at a frontier node, or
(iii) built by sister-adjunction. In general, the model will categorize a
node as a modifier when doing so will result in a simpler representa-
tion of the input corpus, that is, when it allows the input corpus to be
explained using a smaller set of lexical items. Intuitively, the SISTER-
ADJOIN operation allows the model to prune out constituents when
doing so will lead to more compact and generalizable lexical items.

Figure 4: The argument-only model versus the argument-modifier model

Consider Figure 4. If a model posits that there are no modifiers in
these sentences, then it will not identify the shared structure between
two uses of the verb put, and will derive them using distinct sets of
elementary trees, as on the top line of Figure 4. On the other hand,
if it posits that the PP before dinner is a modifier, then it will be able
to derive the core structure of these sentences using a single elemen-
tary tree, as on the bottom line of Figure 4. Nodes will be identified
as modifiers when, like this PP, their removal from the sentence’s ar-
gument structure leads to simpler derivations of the sentences in the
corpus and greater amounts of sharing in the lexicon.
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3.2Inference

To perform inference, we developed a local Gibbs sampler which gen-
eralizes the one proposed by Cohn et al. (2010). This sampler jointly
explores the space of elementary trees and substitution/adjunction at-
tributions for a corpus consisting of parsed sentences. At each itera-
tion, the sampler determines for each node in the corpus whether (i)
the node is internal to an elementary tree, (ii) the node is the root of a
tree which was inserted by substitution, or (iii) the node is the root of
a tree which was inserted by sister-adjunction. The sampler randomly
selects a node in the corpus and resamples its label from the full condi-
tional posterior given the current hypothesis for the rest of the nodes
in the corpus and the elementary tree set.

4SIMPLICITY AND EVALUATION METRICS

Before presenting our results in the next section, we make some ob-
servations about the relationship between our learning framework and
the broader literature. The tradeoff-based approach that we adopt here
can be understood as an instantiation of the classical linguistic notion
of an evaluation metric (Chomsky 1951 [1979], 1955 [1975], 1964).8
Although we make use of probability theory to capture our two kinds
of simplicity, our framework is closely related to other approaches
that operationalize simplicity using the idea of description-length or
succinctness (e.g., Berwick 1982, 1985; Brent 1997, 1999; Cartwright
and Brent 1994; DeMarcken 1996a,b; Grünwald 2007; Hsu and Chater
2010; Hsu et al. 2011, 2013; Li and Vitányi 2008; Perfors et al. 2011;
Phillips and Pearl 2014; Rissanen 1978; Stolcke and Omohundro 1994;
Wolff 1977, 1980, 1982; Yang and Piantadosi 2022, inter alia). Such
approaches go back at least to Chomsky (1951 [1979]) in linguistics
and have been widely discussed in philosophy, statistics, and cogni-
tive science, both with respect to their normative justification as well
as their appropriateness for describing human psychology (see, Li and

8Also see discussion in Goldsmith (2011) and Rasin and Katzir (2016).
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Vitányi 2008, for an overview of many historical threads in statistics,
mathematics, and computer science).

Perhaps the most general treatment comes from the theory of
Solomonoff induction, which uses a distribution over the set of all
possible computer programs to define simplicity preferences related
to those used in this work (Grünwald 2007; Li and Vitányi 2008; Ris-
sanen 1978; Solomonoff 1978, 1964a,b). In this framework, theories
(i.e. computable distributions over observations) are preferred when
they are both simple to describe and provide simple descriptions of the
data. It has been proven that this distribution can be used to asymptot-
ically learn any computable theory, given a sufficient amount of data,
and as a result it has been proposed as a universal, normative account
of learning. The relation between this work and theoretical and empir-
ical problems of language learning are also beginning to be understood
in more detail (see, e.g., Hsu and Chater 2010; Hsu et al. 2011, 2013,
for recent discussion). In cognitive science, there is a large and grow-
ing body of work suggesting that human inductive biases are captured
by models making use of similar simplicity biases (see, e.g., Feldman
2000; Goodman et al. 2008; Piantadosi 2011, 2021, for examples from
concept learning).

However, any formal definition of simplicity is dependent on the
formalism, representation, or machine model with respect to which it
is defined (Li and Vitányi 2008). Therefore, proposals about simplic-
ity are substantive parts of theories of learning and must be evaluated
together with other aspects of such theories. There remain several
different frameworks implementing the simplicity-based approach –
including the Bayesian framework, adopted here, and the minimum
description length framework (Grünwald 2007; Rissanen 1978). It re-
mains for future work to achieve a more fine-grained theoretical and
empirical understanding of similarities and differences amongst vari-
ous approaches to learning-via-simplicity.

5 SIMULATIONS

In this section, we will use the computational models introduced above
to evaluate two questions. First, do the statistics of natural language
corpora provide evidence for the argument or modifier status of indi-
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vidual phrases that is usable by a learner that optimizes a trade-
off between lexical and derivational simplicity? Second, why is the
argument-modifier model a superior model of the input data under
these simplicity biases.

In order to address these questions, we will perform two sets of
analyses. In the first, we will look at whether the argument-modifier
model learns a distinction between arguments and non-arguments
which agrees with a hand-annotated corpus. We will show that the
argument-modifier model classifies arguments and non-arguments in
a manner that aligns with traditional linguistic assumptions. Thus, we
conclude that the argument/modifier status of individual phrases is
evidenced in the input. This provides evidence in favor of both our
formalization of the distinction and in favor of tradeoff-based learning.

In the second set of analyses, we will examine how the argument-
modifier model infers the argument status of constituents using simpli-
city. We will show that the argument-modifier model learns a simpler
representation of the input data than the argument-only model. We
illustrate how this arises as a result of the representational and infer-
ential assumptions discussed above.

5.1Gold Standard Evaluation

Our first set of analyses examine the ability of the argument-modifier
model to correctly classify constituents as arguments or modifiers.
As we discussed above, the model was designed to capture three dif-
ferences between arguments and modifiers that affect their syntactic
distribution: obligatoriness/optionality, finiteness/iterability, and
fixity/flexibility. If the argument-modifier model is able to correctly
distinguish modifier and argument phrases in the training corpus, we
can conclude that these three distributional differences provide a sig-
nal to appropriately equipped learners.

We trained the argument-modifier model on sections 2–21 of the
Wall Street Journal portion of the Penn Treebank (Marcus et al. 1999).
The input consisted of approximately 40,000 parsed sentences, with-
out any further annotations for argument or modifier status. Under
the Penn Treebank’s tree annotation scheme, arguments and modifiers
are not distinguished from each other by their hierarchical relations
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in the parse tree (or in any other way). In particular, the arguments
and modifiers of a phrase are most often siblings in the tree. Thus,
the argument-modifier model could not directly use any information
in the input corpus to simply read off each sentence’s argument and
modifier structure.

In order to evaluate the accuracy of the argument-modifier model
classification of arguments and modifiers, we require a gold standard
which provides annotations for arguments and modifiers in the Penn
Treebank. Unfortunately, no such resource provides a classification
of all nodes in the Penn Treebank (or CHILDES, MacWhinney 2000,
which we use in our next study). However, for a subset of the phrases
in the Penn Treebank, such information is available in the PropBank
corpus (Palmer et al. 2005) which provides annotations of argument
andmodifier structure for all of the verbal predicates in theWall Street
Journal portion of the corpus. As noted in Palmer et al. (2005), the
annotation of modifiers in PropBank is non-standard in certain cases.
In particular, NEG and MOD categories are annotated as modifiers. We
therefore exclude these categories from our analyses. PropBank does
not annotate the arguments or modifiers of expressions which are not
verbal predicates. Our model evaluations were performed by running
the Gibbs sampler described in Section 3.2 for 100 iterations, and se-
lecting the node labelings which were output on the final iteration.

For the purpose of our analyses, all sister-adjoined nodes are clas-
sified as modifiers, and all other nodes (i.e. nodes which are internal to
an elementary tree or at the leaf of one) are classified as non-modifiers.
We compared the model’s labels to those provided by PropBank, on
the subset of nodes for which PropBank provides annotations.

To show that differences in the distributions of argument and
modifier phrases provide a valuable source of evidence for lexicon ac-
quisition, we first establish that our model is able to correctly classify
phrases at a rate which is better than chance. To demonstrate this, we
computed the precision (i.e. number of correctly identified modifier
nodes divided by the total number of modifier nodes identified by the
model) and recall (i.e. number of correctly identified modifier nodes
divided by the total number of modifier nodes in the gold-standard)
of the model and compared it with two baselines. The first baseline
randomly classifies each node as internal to an elementary tree, the
leaf of an elementary tree, or a modifier with equal probability. Note
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that prior to receiving any training data, the model has no informa-
tion about which phrase types are likely to be modifiers and which
are likely to be arguments. The random baseline therefore represents
the model’s knowledge of the argument/modifier distinction prior to
training, and any improvement in the model’s classification of modi-
fiers must be attributed to information contained in the input data.

The second baseline treats every node as a modifier. We introduce
this baseline in order to illustrate some basic facts about PropBank. Ta-
ble 1 shows precision and recall in identifying the modifiers of verbal
predicates in the corpus. The argument-modifier model is compared
to three baselines: an all-modifier baseline, in which every node is la-
beled as a modifier, a random baseline, and a version of the model
that does not use context to predict modifiers. PropBank annotated
179,058 nodes in the corpus for their argument/modifier status. These
nodes represent approximately 10% of the total nodes in the corpus.
Among the annotated nodes, 45,507 (25%) are modifiers, meaning
that 25% of the guesses of the all-modifier baseline are correct.

Precision measures accuracy of modifier-predictions. Table 1
shows that the argument-modifier model is significantly more ac-
curate than the random and the all-modifier baselines, demonstrating
that the training data has provided information which allows the
model to correctly classify many constituents.

Model Precision Recall Accuracy
all-modifier 0.25 1 0.25
all-argument N/A 0 0.75
random 0.29 0.23 0.66
SAG 0.66 0.52 0.81

Table 1:
Precision and recall
of the argument-modifier model

Recall measures the coverage of gold-standard modifier nodes
achieved by themodels. Again, the argument-modifiermodel achieved
significantly higher coverage than the random baseline, indicating
that the training data contains enough information to increase the
number of true modifiers that the model recognizes.

In order to better understand what the argument-modifier model
learned about the modifiers of verbal predicates, the evaluations
against PropBank were further broken down by the category of the
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Table 2:
Labelings for modifiers

of VP nodes, broken down
by child category

VP Parent
Child category Model Precision Recall PropBank
ADVP random 0.95 0.23 12,385
ADVP SAG 0.95 0.47 12,385
NP random 0.04 0.23 3,345
NP SAG 0.47 0.57 3,345
PP random 0.49 0.22 18,841
PP SAG 0.56 0.54 18,841
SBAR random 0.40 0.22 4,552
SBAR SAG 0.84 0.63 4,552

modifier. Table 2 shows the results for the phrase types which occur
most frequently as verbal modifiers: adverb phrases (ADVPs), noun
phrases (NPs), prepositional phrases (PPs), and subordinate clauses
(SBARs). Together these categories of constituent account for more
than 85% of the modifiers in the training corpus.

For the phrase categories of adverb phrases (ADVPs) and preposi-
tional phrases (PPs), the model doubles the recall of the random base-
line, and roughly maintains its baseline precision. Adverb phrases are
typical modifiers when they appear within a verb phrase (VP). Out of
13,197 ADVPs annotated by PropBank, 12,384 are modifiers. Preposi-
tional phrases are also frequently modifiers when they appear in this
context. Out of 38,861 PPs annotated by PropBank, 18,839 are mod-
ifiers. The increase in the model’s recall therefore indicates that the
model learned to correctly classify many of these ADVP and PP modi-
fiers.

In contrast to adverb and prepositional phrases, noun phrases
(NPs) which appear within verb phrases are typically arguments to
the verb. Out of 92,965 NPs annotated by PropBank, only 3,306 ap-
pear as modifiers. Exceptions to this generalization are cases where a
noun phrase is used as an adverbial modifier, such as the noun phrase
last night in They played the game last night. The precision of the model
increased by a factor of 10 for NPs, indicating that it incorrectly classi-
fied many fewer non-modifier NPs. In addition, the model’s precision
more than doubles the baseline.

Phrases belonging to the category of subordinate clauses SBAR can
serve either as arguments or modifiers. For example, in the sentence
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John said that he would be late, the subordinate clause that he would
be late is an argument of the verb said. By contrast, in the sentence
The woman laughed when she heard the joke, the clause when she heard
the joke is a temporal modifier of the verb laughed. Out of 13,617 SBAR
phrases annotated by PropBank, 4,551 are modifiers. The model’s pre-
cision and recall on SBAR phrases was more than twice that of the
random baseline, showing that the model classified fewer clausal ar-
guments as modifiers, and correctly identified a greater number of
clausal modifiers.

As we mentioned above, certain categories of constituents have
highly stereotyped argument-modifier status when they appear as chil-
dren of other categories. For example, adverb phrase (ADVP) children
of verb phrases (VP) and adjective phrase (JJ) children of noun phrases
(NP) are both typically modifiers of their parent constituents.

PropBank only provides argument-modifier annotations for the
children of verb phrases (VP), and therefore we do not have a gold
standard for modifiers occurring outside of VPs. Nonetheless, it is pos-
sible to use the stereotyped behavior of these categories to examine
the model’s performance on the children of non-VP nodes. Tables 3–6
show the model’s classification of constituents which were children
of sentence-level constituents (S), prepositional phrases (PPs), noun
phrases (NPs), and subordinate clauses (SBARs), respectively. In each
of these cases, the category of child constituents is highly indicative
of their argument-modifier status.

For sentence-level (S) constituents, we analyzed three categories
of child phrase: noun phrases (NPs), verb phrases (VPs), and (ADVPs).
These are the three most common categories which have stereotyped
argument/modifier behavior when they appear as children of nodes.
Of these three phrase types, noun and verb phrase are typically not
modifiers, whereas adverb phrases typically are. For example, in Usu-
ally, John wears a coat, the adverb Usually is a modifier of the sentence
while John andwears a coat are not modifiers. Table 3 shows how often
the model labeled the children of sentence-level constituents as modi-
fiers nodes. The model accords with intuition here, most often labeling
adverb phrases but not noun or verb phrases as modifiers.

For prepositional phrases (PPs), we considered four categories of
child constituent: adverb phrases (ADVPs), noun phrases (NPs), prepo-
sitions (INs), and to (TOs). Of these phrase types, only adverb phrases
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Table 3:
Labels

for children
of S nodes

S parent
Child category Model #Guessed Corpus total Typically modifier
ADVP random 1,393 6,063 Y
ADVP SAG 2,331 6,063 Y
NP random 16,654 93,076 N
NP SAG 1,738 93,076 N
VP random 16,005 89,984 N
VP SAG 572 89,984 N

typically modify the parent prepositional phrase. For example, in the
prepositional phrase immediately after the opening, the adverb phrase
immediately is a modifier while the prepositional head after and noun
phrase the opening are not. In accord with these intuitions, Table 4
demonstrates that the model classifies most adverb phrase children of
prepositional phrases as modifiers, but treats prepositional heads and
noun phrases as non-modifiers.

Table 4:
Labels

for children
of PP nodes

PP parent
Child category Model #Guessed Corpus total Typically modifier
ADVP random 216 1,109 Y
ADVP SAG 547 1,109 Y
IN random 13,972 83,848 N
IN SAG 672 83,848 N
NP random 15,060 88,556 N
NP SAG 496 88,556 N
TO random 1,484 8,654 N
TO SAG 64 8,654 N

We considered four categories of subconstituents for noun phrases
(NPs): determiners (e.g., the, a; DT), adjectives (JJ), other noun
phrases, and prepositional phrases. Determiners are unlikely to modify
noun phrases, while adjectives typically do modify them. For example,
in the noun phrase the big chair, the determiner the is not a modifier,
while the adjective big modifies the noun chair. Prepositional phrases
are often modifiers (e.g., in the resort by the sea, the prepositional
phrase by the sea modifies the noun resort), although in some cases,
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NP parent
Child category Model #Guessed Corpus total Typically modifier
DT random 15,791 77,553 N
DT SAG 1,701 77,553 N
JJ random 10,544 45,812 Y
JJ SAG 9,717 45,812 Y
PP random 7,652 43,420 Y
PP SAG 3,226 43,420 Y

Table 5:
Labels
for children
of NP nodes

such as deverbal nominalizations, they are typically treated as argu-
ments of the head noun (e.g., in the noun phrase the destruction of the
city, the prepositional phrase of the city is an argument of the head
noun; see, e.g., Chomsky 1970).

Table 5 shows the modifier-classification rates of noun phrase
children. The model correctly identifies determiners as non-modifiers.
However, for adjectives, the most prototypical modifiers of noun
phrase, the model’s performance is weaker: The number of JJs clas-
sified as modifiers is approximately the same as the random baseline.
The number of PPs classified as modifiers decreased by more than half
relative to the random baseline, though the implications of this are
unclear: As discussed above, PPs appear frequently as the modifiers of
noun phrases but also as arguments. It should be noted that the Penn
treebank is notorious for having many complex noun phrases consist-
ing of long sequences of noun compounds annotated with a single flat
structure. This likely affected the ability of the model to distinguish
amongst the children of NP nodes.

SBAR parent
Child category Model #Guessed Corpus total Typically modifier
S random 4,873 29396 N
S SAG 101 29396 N
WHADVP random 421 2521 N
WHADVP SAG 38 2521 N
WHNP random 1,383 8505 N
WHNP SAG 79 8505 N

Table 6:
Labels
for children
of SBAR nodes
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The category SBAR is used to mark subordinate clauses in the
Penn treebank. Here we consider the following categories of chil-
dren: sentence-level constituents (Ss) and wh-expressions (WHADVPs
and WHNPs) which are used to introduce subordinate clauses (e.g., the
word when in the sentence The woman laughed when she heard the joke).
None of these types of constituent is typically thought of as modifying
subordinate clauses. Table 6 shows, consistent with this intuition, that
the model treats all three categories as non-modifiers.

5.1.1 Discussion

We have presented two sets of results in this section. First, we have
shown that the argument-modifier model’s accuracy at classifying ar-
guments and non-arguments substantially improves over a random
baseline. Second, we have shown that among phrases that are not la-
beled in the gold standard (i.e., all phrase types but verb phrases), the
argument-modifier model learns an argument/non-argument classifi-
cation which appears linguistically reasonable for most major phrasal
categories.

These results have two consequences for the arguments in this
paper. The argument-modifier model is built on the assumption of
three distributional differences between lexical argument-structure-
derived phrases and modifier phrases: finiteness v. iterability, obli-
gatoriness v. optionality, and structural fixity v. structural flexi-
bility. Since the argument-modifier model made use of these prop-
erties in order to classify phrases in the input corpus as arguments
or non-arguments, its performance on the gold standard shows that
we have captured some linguistically relevant properties of arguments
and modifiers using these properties.

The results also show that the distributional information con-
tained in the input corpus is often sufficient for recovering the ar-
gumenthood of specific constituents. The argument-modifier model
does not have any a priori knowledge about which types of phrases
are likely to be arguments, and it leverages only distributional infor-
mation in order to infer the status of individual phrases. Thus, its
performance in categorizing arguments and non-arguments must be
attributable to the distributional information contained in the corpus.
This distributional information is leveraged by the model by trading
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off the simple lexicon and simple derivation biases. We note that our
study is an example of an ideal learner analysis (Pearl and Goldwater
2016); that is, the model is highly idealized and not intended to veridi-
cally represent a child language learner. Therefore, our results do not
demonstrate that children use distributional information to identify
the argument or modifier status of individual constituents. Instead,
they indicate that such information would be available to any learner
that made similar assumptions about the relationship between sim-
plicity and learning.

5.2Lexicon learning, arguments structure, and simplicity

In the previous section, we showed that the argument-modifier model
is able to correctly recover the modifier status of many constituents
using only the pattern of co-occurrences between constituents in the
training set. In this section, we show how this performance is the re-
sult of the simplicity biases outlined in Section 3. As discussed in that
section, our framework makes use of two competing simplicity biases.
The simple lexicon bias favors small numbers of highly reusable lexi-
cal items and the simple derivation bias favors derivations of individ-
ual forms using small numbers of lexical items. Typically, these two
biases lead to a tradeoff. Smaller, more reusable lexical items mean
more complex derivations and vice versa. However in this section, we
present simulations demonstrating that compared to the argument-
only model, the argument-modifier model learns a more compact gen-
eralizable lexicon, while also providing simpler derivations for indi-
vidual forms. If we fix a particular dataset as well as fix a particular
model (argument-only model or argument-modifier model and all pa-
rameters), there is at least one optimal (i.e., most probable), solution
for that model-dataset combination. Any lexicon/derivation set that
increases one kind of simplicity with respect to this optimum will nec-
essarily decrease the other. Thus, our results show that the argument-
modifier model is overall a better model for the data since it is able to
find a solution which is superior under both measures.

To see how it is possible that the argument-modifier model is able
to optimize both kinds of simplicity simultaneously consider a verb
phrase (VP) headed by a verb like put. In simplest form, put requires
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two VP-internal arguments – a noun phrase (NP) expressing the object
which was put somewhere, and a prepositional phrase (PP) expressing
the destination – put his socks in the suitcase. Across particular uses of
this simple put-construction, the VP node will often have the follow-
ing sequence of children: V NP PP. However, because modifiers are
optional, iterable, and appear at a variety of positions within a con-
stituent, they can greatly increase the number of different observed se-
quences of children of the VP node: put his socks suddenly in the suitcase
[V NP ADVP PP], put his socks in the suitcase suddenly without warning
[V NP PP ADVP PP], etc. The argument-modifier model is able to ex-
plain away the presence of these additional phrases using the SISTER-
ADJOIN operation, and is driven to do so because this leads to a lexicon
of argument-structure fragments and derivations of individual forms
which better optimizes both simplicity biases.

In the analyses in this section, we provide empirical support for
this argument. To demonstrate the point, we show that the argument-
modifier model can account for the same data as the argument-only
model with a more compact lexicon and simpler derivations of each
sentence. We show this on both training and holdout data drawn from
two corpora: the Wall Street Journal portion of the Penn Treebank,
and the Brown (1973) portion of the CHILDES database (MacWhinney
2000). For the WSJ, the model was trained on the 40,000 parsed sen-
tences from sections 2-21 (the same sentences that were used in the
gold standard analyses). The CHILDES sections used here consist of
approximately 30,000 child-directed utterances which were recorded
between ages 1;6 to 5;1. Sentence fragments and wh-questions were
excluded from our analyses, though the results do not differ substan-
tially when fragments and questions are included.

The training regime was the same as in the gold standard analy-
sis: The models received parse trees for each sentence as input. Be-
cause the CHILDES database does not provide parses, we used the
corpus of parsed CHILDES sentences developed by Pearl and Sprouse
(2013). We include these CHILDES analyses below because it is more
likely than newspaper text to be representative of the input received
by a typical natural language learner. Note that we did not include
the CHILDES corpus in the previous evaluation because we do not
have gold-standard annotations of the argument/modifier status of
any phrases in this corpus. The differences between the two corpora
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can be illustrated by several simple statistics. On average, the sen-
tences in the WSJ corpus contain 25 words, while the sentences in
CHILDES contain 6.5 words. The parse trees in the WSJ contain 71
nodes on average, while those in CHILDES contain 19 nodes. Finally,
the average maximum depth (i.e., the longest distance from the root
node to a leaf) of the parse trees in the WSJ is 10, while the aver-
age depth in CHILDES is 5. These statistics show that the sentences in
the WSJ are significantly longer and more syntactically complex than
those in CHILDES.

5.2.1Lexical and derivational simplicity in the training set

In this section, we compare the ways in which the argument-modifier
model and the argument-only model represent the input training data
for the WSJ and CHILDES corpora. We first examine the bias for
reusable lexical items. Figure 5 shows the cumulative frequencies of
the 1,000 most often stored tree fragments in the lexicons of the
argument-modifier model and argument-only model, as learned on the
CHILDES (left) and WSJ (right) training sets. We computed these val-
ues by first ranking tree fragments by frequency of occurrence in the
lexicon; this resulted in a rank for each type of tree fragment, with
lower rank corresponding to greater frequency. Then, for all tree frag-
ments below a given rank (e.g., for the tree fragments below rank 100,
corresponding to the 100 most common tree fragments), we computed
the sum of the frequencies of these fragments.9 The figure shows that
the most reusable tree fragments learned by the argument-modifier
model are used more often across sentences in the training corpus
than the most reusable tree fragments learned by the argument-only
model. The difference is more pronounced in the WSJ training set.
This is likely due to the greater sentence complexity and greater num-
ber of modifiers in newspaper text compared to child-directed speech.

9Tree fragments which were rooted at part-of-speech nodes (pre-terminals)
were excluded from this and subsequent analyses. A subtree which is rooted at a
part of speech necessarily consists of exactly two nodes (the part of speech and
the terminal string which it is a parent of). As a result, there is only one parse for
such subtrees, and both models will always parse such a subtree in an identical
manner.
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Figure 5: Cumulative Frequencies

We next examine whichmodel was able to provide simpler deriva-
tions of individual sentences. One way to measure this is to look at the
complexity of stored tree fragments learned by each model. If a model
stores tree fragments which are larger (on average), then it must ac-
count for each sentence using fewer fragments (on average). Figure 6
shows the cumulative average number of nodes (left) and average
depth (right) of the 1,000 most common elementary trees learned
by the argument-modifier model and the argument-only model on
the CHILDES and WSJ corpora. These figures show that the elemen-
tary trees learned by the argument-modifier model are more complex
than those learned by the argument-only model, and therefore that
the derivation of individual sentences involve fewer lexical items (on
average). The difference in tree fragment complexity is greater for the
WSJ corpus than for CHILDES, most likely because the parse trees in
the WSJ corpus contain a greater number of nodes and have greater
depth than those in CHILDES.

Figure 7 shows the cumulative proportion of nodes in the training
corpus which are accounted for by the 1,000 most common stored tree
fragments learned by the argument-modifier model and the argument-
only model. Because it learns both more reusable and larger stored
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tree fragments, the argument-modifier model is able to account for
the training data using a smaller number of stored items.

5.2.2 Lexical and derivational simplicity in new sentences

The previous analyses demonstrate that the argument-modifier model
learns a more parsimonious representation of the input than the
argument-only model. An important caveat, however, is that the
argument-modifier model is a more complex grammatical formalism
than the argument-only model. Whereas the argument-only model
only has a single composition operation (SUBSTITUTE), the argument-
modifier model has two composition operations (SUBSTITUTE and
SISTER-ADJOIN). This means that the model has more degrees of free-
dom in explaining an input training set. As a result, it is possible that
the argument-modifier model’s performance is due to overfitting. A
standard method to diagnose overfitting is to evaluate the model on
novel data. If the model is overfit on the training data, then it will have
captured spurious regularities in its input, and will therefore general-
ize poorly to new data.

In order to determine whether the parsimony advantages of the
argument-modifier model generalize to novel data, we divided the
CHILDES and WSJ corpora into training and test portions. The train-
ing portion was used as input to the argument-modifier model and
argument-only model, while the test portion was used for evaluating
the generalizability of these grammars. For the WSJ corpus, we used
the standard split: training on sections 2–21 and testing on section 23.
For the CHILDES corpus, we randomly selected 80% of the sentences
for training, and used the remaining 20% for test.

Our evaluation of the argument-modifier model follows the
method in the previous section. We compare the argument-modifier
model to the argument-only model, and conduct similar analyses of
fragment reusability and derivation complexity (fragment size). In
order to perform these analyses, we applied our sampler to the test
portions of the two corpora without incorporating any new tree frag-
ments into the set of learned tree fragments. That is, after training we
froze the set of lexical fragments (and associated counts) and did not
allow any learning from the test set during inference. Thus each sen-
tence in the test corpus was analyzed as if it were the next observed
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Figure 8: Cumulative frequencies (generalization)

sentence after training. The analyses below are otherwise identical to
those in the previous section.

We first examine the bias for reusable lexical items. Figure 8
shows the cumulative frequencies of the 1,000 most common tree
fragments from the lexicons of the argument-modifier model and the
argument-only model, as inferred on the CHILDES (left) and WSJ
(right) test sets. The figure shows that the commonly stored tree frag-
ments learned by the argument-modifier model are used more often
across sentences in the test corpus. The difference is again more pro-
nounced in the WSJ test set due the greater sentence complexity and
number of modifiers in newspaper text compared to child-directed
speech.

We next turn to the bias for simple derivations of individual sen-
tences. As in the previous simplicity analyses, we measure derivation
complexity by examining the size of tree fragments used to account
for test sentences. Larger tree fragments imply fewer fragments per
derivation. Figure 9 shows the cumulative average number of nodes
(left) and average depth (right) of the 1,000most common elementary
trees used to account for the new sentences by the argument-modifier
model and the argument-only model on the CHILDES and WSJ test
corpora. These figures show that the elementary trees learned by the

[ 271 ]



Leon Bergen et al.

Average Tree Size-Test Set

Rank

A
ve

ra
ge

 n
um

be
r o

f n
od

es

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

200 400 600 800 1000

CHILDES

WSJ

SAG

TSG

Average Tree Depth-Test Set

Rank

A
ve

ra
ge

 d
ep

th

1.6

1.8

2.0

200 400 600 800 1000

CHILDES

WSJ

SAG

TSG

Figure 9: Complexity of stored tree fragments (generalization)

Corpus Coverage-Test Set

Rank

P
ro
po
rti
on

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

200 400 600 800 1000

CHILDES

WSJ

SAG

TSG

Figure 10: Cumulative coverage (generalization)

[ 272 ]



Arguments and modifiers

argument-modifier model are more complex than those learned by the
argument-only model and, therefore, that the derivations of individual
sentences are simpler.

Thus, the argument-modifier model’s advantage in both kinds of
simplicity transfers to the case of new sentences. This is further con-
firmed in Figure 10 which shows the cumulative proportion of nodes
in the training corpus that are accounted for by the 1,000 most com-
mon stored tree fragments learned by the two models.

5.2.3Discussion

The preceding analyses indicate that the sister-adjunction model is
able to learn both more reusable lexical items, and simpler deriva-
tions of each sentence than the tree-substitution model. As we dis-
cussed previously, the inference performed in learning the set of lexi-
cal fragments for the argument-only model can be understood in terms
of a tradeoff. All else being equal, smaller tree fragments are more
reusable, leading to smaller lexica. However, larger tree fragments
lead to simpler derivations, since fewer are needed per derivation.
For a given corpus, if a particular model is at or near an optimum, in-
creasing the reusability of lexical items in an otherwise optimal model
will necessarily increase the complexity of derivations, and decreasing
the complexity of derivations will necessarily increase the size of the
lexicon. Nevertheless, the argument-modifier model is better in both
simplicity measures, indicating that it provides a globally superior ac-
count of the input data be learning a smaller lexicon of larger tree
fragments.

To understand these results better, again consider the example
sentences in Figure 4. The argument-modifier model is able to use a
single elementary tree (stretching from the root S node to the verb
put) to derive the core of both sentences. In contrast, as Figure 4
shows, the argument-only model will require two distinct elementary
trees, one with three arguments under the VP node (for the first sen-
tence) and one with four arguments (for the second). Thus, because
the argument-modifier model can compose an optional PP such as at
5 o’clock separately from a sentence’s core argument structure, it can
re-use the same elementary tree to derive a greater number sentences
in the corpus. This explains how the argument-modifier model can use
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Figure 11:
Example

derivation from
the WSJ corpus

S

NP

Most of those who left stock funds

ADVP

simply

VP

VP

VBD

switched

PP

into money market funds

ADVP

simply

PP

into money market funds
VBD

switched

NP

Most of those who left stock funds

its sister-adjunction operation to find more reusable elementary trees
than the argument-only model. It is driven to do so by the the prior
preference for a smaller lexicon.

Figure 11 illustrates a representative example from the WSJ cor-
pus. By using SISTER-ADJOIN to account for the ADVP node separately
from the rest of the sentence’s derivation, the argument-modifier
model was able to use a common depth-three elementary tree to derive
the backbone of the sentence. By contrast, the argument-only model
must include the ADVP node in an elementary tree; this elementary
tree is much less common in the corpus.

6 CONCLUSION

In this paper, we have studied the learnability of the argument-
modifier status of phrases. We have formulated the distinction as one
between lexical and non-lexical modes of composition which give rise
to three differences between the two types of constituents which have
distributional consequences: iterability v. finiteness), optionality v.
obligatoriness, and structural flexibility v. structural fixity. We then
proposed that the modifier or argument status of individual phrases
could be learned based on optimizing a tradeoff between two compet-
ing biases: the simple lexicon bias and the simple derivation bias.
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Our first set of gold standard results indicate that our formaliza-
tion of the distinction accords with the traditional distinction between
arguments andmodifiers. Furthermore, our results show that linguistic
input contains a strong distributional signal to the modifier/argument
status of individual phrases – at least for a learner making use of the
tradeoff between lexical and derivational simplicity.

Our second set of results illustrate why the argument-modifier
model is able to identify the status of individual phrases. The addi-
tion of the SISTER-ADJUNCTION operation allows the model to put
derivations into a kind of normal form for which the optimal lexicon
contains of both more complex and more reusable fragments. Thus,
the argument-modifier model achieves a greater degree of lexical and
derivational simplicity simultaneously.

Taken together, these results show that there is considerable dis-
tributional evidence for the traditional argument-modifier distinction,
but that a simplicity-based learner equipped with lexical and extra-
lexical modes of composition could make use of this evidence to ac-
quire the pattern of arguments and modifiers in their language. This
result is complementary to traditional linguistic argumentation about
the distinction. Our formulation of the problem has deliberately ig-
nored any semantic or, in fact, any non-distributional aspects of the
argument-modifier distinction. Any such systematically correlated in-
formation should only make the learning problem easier.

APPENDIX

FORMALIZATION OF THE MODELS

The argument-modifier model extends earlier work on induction of
Bayesian TSGs (Cohn et al. 2010; O’Donnell 2011, 2015; O’Donnell
et al. 2011; Post and Gildea 2009). The Pitman-Yor Process allows
the complexity of the lexicon to grow with more input sentences,
while still enforcing a bias for more compact lexicons (Pitman and
Yor 1995). As discussed in Section 3.1, the model has two compo-
nents: (i) A distribution over elementary trees, similar to earlier mod-
els of Bayesian TSG induction, and (ii) a distribution over modifiers.
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Algorithm 1 provides pseudocode for the generative model. Note that
throughout, we will use the notation cp to refer to the nonterminal
category of a node p.

For each node p, the distribution over elementary trees rooted at
that node is given by:

(1) Gcp
|acp

, bcp
, PE ∼ PYP(acp

, bcp
, PE(·|cp))

where PE(·|cp) is a context free distribution over elementary trees with
root label cp. The hyperparameters acp

, bcp
are set to acp

= 0, bcp
= 1

for this paper.10
The context-free distribution over elementary trees PE(e|c) is de-

fined by:

(2) PE(e|c) =
∏

i∈I(e)

(1− sci
)
∏

f ∈F(e)

sc f

∏
c′→α∈e

Pcfg(α|c′),

where I(e) is the set of internal nodes in e, F(e) is the set of frontier
nodes, sc is the probability that we stop expanding at a node labeled
c, and Pcfg(α|c′) is the probability of the context-free rule expanding
category c′ to the sequence α, c′ → α. For this paper, the parameters
sc are set to 0.5. The distribution Pcfg(α|c′) is defined using a distribu-
tion that is similar to the Infinite PCFG (Finkel et al. 2007; Liang et al.
2007),11 which provides a Dirichlet process prior for PCFG rules.12

10Given these parameter values, the prior reduces to the model known as
a Dirichlet process. Since our implementation allows for other values of a we
present the more general version of the mathematics.

11Our base distribution over PCFG rules differs from the Infinite PCFG as
presented in Liang et al. (2007) in a number of ways. First, rather than being a
hierarchical Dirichlet process model, our set of nonterminal categories is fixed to
be equal to the set of nonterminal categories in the treebank. Second, our rules
are not fixed to be in Chomsky normal form, but rather the length of the right-
hand side of each rule is sampled from a geometric distribution, and each child
symbol is drawn conditioned on the parent symbol and then entire left context of
the symbol, which is backed-off using the scheme of Teh (2006) and Goldwater
et al. (2006).

12We use this nonparametric prior so that in addition to learning a distribution
over elementary trees, we can also learn a distribution over context-free rules.
The inferred distribution over context-free rules may substantially differ from the
maximum-likelihood estimate derived from the corpus, as nodes that the model
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β ∼ Dir(1, ..., 1) [draw prior over nonterminals]
for each nonterminal sequence c1, ..., cn:

Prhs(c1, ..., cn) =
1
2n

∏
i βci

[define base distribution for pcfg
prior]

for each nonterminal c:
Pcfg(·|c)∼ DP(a, Prhs(·)) [draw distributions over CF rules]

for each nonterminal c:
for each elementary tree e rooted at c:

F(e)= frontier of e, I(e)= interior nodes of e
PE(e|c) =∏i∈I(e)(1− sci

)
∏

f ∈F(e) sc f

∏
c′→α∈e Pcfg(α|c′)

Gc ∼ PYP(ac, bc, PE(·|c)) [draw distributions over elementary
trees]

θ ∼ Dir(1, ..., 1) [draw base distribution over nonterminals]
for each sequence of nonterminals C = ql , ..., q1: [draw modifier
distributions]
if length(C)==1

HC ∼ DP(α,Multinomial(θ ))
else

HC ∼ DP(α, HC ′), where C ′ = ql−1, ..., q1

for each node f on the frontier of the parse tree:
e ∼ Gc f

[sample an elementary tree rooted at category c f ]
substitute e at f
for each internal node p in e:
for each argument child di of p:
j=1
C = cd1

, s1,1, ..., cdi
, cp [C is the context for di]

si, j ∼ HC [draw from the modifier distribution for di]
while si, j ̸= STOP [continue until drawing a STOPsymbol]
sister-adjoin a node labeled si, j between di, di+1

j+=1
C = cd1

, s1,1, ..., cdi
, si,1, ..., si, j−1, cp [add sampled modifier

to the context]
si, j ∼ HC

Algorithm 1:
Sister-adjunction
grammar

[ 277 ]



Leon Bergen et al.

A similar base distribution for elementary trees is used in Cohn et al.
(2010) and Post and Gildea (2009). The base distribution over elemen-
tary trees thus will be biased towards small elementary trees which use
frequent context-free expansions.

In addition to defining a distribution over elementary trees,
we also define a distribution which governs modification via sister-
adjunction. To sample a modifier, we first decide whether or not to
sister-adjoin into location l in a tree. Following this step, we sample
a modifier category (e.g., a PP) conditioned on the location l ’s con-
text: its parent and left siblings. Because contexts are sparse, we use
a backoff scheme based on hierarchical Dirichlet processes similar to
the ngram backoff schemes defined in Teh (2006) and Goldwater et al.
(2006). Let e be an elementary tree that has been substituted into the
parse tree, and let p be an internal node in e. The node p will have
n ≥ 1 children derived by argument substitution: d1, ..., dn. In order
to sister-adjoin between two of these children di, di+1, we recursively
sample nonterminals si,1, ..., si,k until we sample a STOP symbol:

Pa(si,1, ..., si,k,STOP|C0) = (
k∏

j=1

Pa(si, j|C j)) · Pa(STOP|Ck+1)(3)

where C j = cd1
, s1,1, ..., cdi

, si,1, ..., si, j−1, cp is the context for the jth
modifier between these children. The distribution over sister-adjoined
nonterminals is defined using a hierarchical Dirichlet process to im-
plement backoff in a prefix tree over contexts. Given the context
C = ql , ..., q1 (where l > 1), we define the distribution HC over sister-
adjoined nonterminals si, j by:

(4) HC ∼ DP(α, HC ′),

where C ′ = ql−1, ..., q1. A sample is drawn from the root of the hier-
archy when the context C is of length 1 (and hence the backed-off
context is empty). A Dirichlet-multinomial distribution is used as the

labels as modifiers are not included in the derivation of an elementary tree. This
approach is also suitable to the unsupervised setting (as in Cohn et al. 2010), in
which the derived trees in the corpus are not observed.
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prior in this case:

θ ∼ Dir(1, ..., 1)

HC ∼ DP(α,Multinomial(θ ))

where C = q1 and θ is a vector with entries for each nonterminal
and an entry for the STOP symbol. The backoff scheme for sampling
modifiers is illustrated in Figure 12.

VP

NP NP PP

VP

NP NP PP

VP

NP NP PP

VP

NP NP PP

Figure 12: This illustrates the procedure for sampling a modifier at the right
edge of a VP. The distribution over modifiers is conditioned on the modifier’s
context, which contains its VP parent and left siblings, as illustrated on the left
of the figure. This distribution is estimated by successively backing off to smaller
contexts
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